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Abstract Endonuclease V (EndoV) is a metal-dependent
DNA repair enzyme involved in removal of deaminated
bases (e.g., deoxyuridine, deoxyinosine, and deoxyxantho-
sine), with pairing specificities different from the original
bases. Homologs of EndoV are present in all major phyla
from bacteria to humans and their function is quite well
analyzed. EndoV has been combined with DNA ligase to
develop an enzymatic method for mutation scanning and
has been engineered to obtain variants with different
substrate specificities that serve as improved tools in
mutation recognition and cancer mutation scanning. How-
ever, little is known about the structure and mechanism of
substrate DNA binding by EndoV. Here, we present the
results of a bioinformatic analysis and a structural model of
EndoV from Escherichia coli in complex with DNA. The
structure was obtained by a combination of fold-recogni-
tion, comparative modeling, de novo modeling and docking
methods. The modeled structure provides a convenient tool
to study protein sequence-structure-function relationships in
EndoV and to engineer its further variants.

K. A. Majorek * J. M. Bujnicki (<)

Institute for Molecular Biology and Biotechnology,
Adam Mickiewicz University,

Umultowska 89,

PL-61-614 Poznan, Poland

e-mail: iamb@genesilico.pl

J. M. Bujnicki

Laboratory of Bioinformatics and Protein Engineering,
International Institute of Molecular and Cell Biology,
Trojdena 4,

02-109 Warsaw, Poland

Keywords Endonuclease V- EndoV- Homology modeling -
Protein-DNA docking - Protein fold-recognition

Introduction

Deoxyribonucleic acid (DNA) of all organisms is subjected
to a wide range of mutagenic agents. Base deamination is a
major type of DNA damage under nitrosative stress, but it
can occur spontaneously as well, generating the base
analogs, which have pairing specificities different from
the original bases. Endonuclease V (EndoV) is a repair
enzyme, which initiates removal of deaminated bases from
damaged DNA. It is also called deoxyinosine 3’ endonu-
clease, as it preferentially cleaves DNA containing deoxy-
inosine, a deamination product of deoxyadenosine.
However, EndoV may also recognize deoxyxanthosine,
deoxyoxanosine, deoxyuridine, abasic (AP) sites, base
mismatches, flap DNA, pseudo-Y structures, and small
insertions/deletions in DNA molecules [1, 2]. The cleavage
site generated by EndoV occurs at the second phospho-
diester bond in the 3’ direction from the lesion, leaving a
nick with 5'-phosphate and 3’-hydroxyl groups [1]. EndoV
requires Mg?" or Mn?" ions for its activity. Although there
is no general agreement on the number of metal ions
involved in catalysis, recently a catalytic and regulatory
two-metal model has been proposed, similar to the one
proposed for restriction endonucleases [3]. According to
this model, EndoV possesses two metal binding sites, M1
and M2. Occupation of the M1 site by a catalytic metal
(Mg?" or Mn*") is required for catalysis and the M1 site has
relatively high affinity for metal ions. Occupation of the M2
site is not essential for catalysis, but it can regulate the

@ Springer



174

J Mol Model (2009) 15:173-182

activity catalyzed by the metal ion located in the M1 site.
The M2 site can be occupied by Mg?" or Mn*", as well as
by Ca*". On the other hand, if Ca®" is located in the M1
site, it inhibits the cleavage reaction. Alternatively, EndoV
may follow the mechanism proposed for RNase H, in
which both metal ions are catalytic [4].

EndoV homologs have been found in Eubacteria,
Archaea and Eukaryota. Prokaryotic members of the family
are approximately 200 amino acids in length, while the
mammalian homologs are about 100 aa longer due to the C-
terminal extension. Some EndoV family proteins have
additional domains leading to significant enlargement of
the entire protein (e.g., C. elegans enzyme is 758 aa long).
Sequence alignments of EndoV homologs allowed identi-
fying seven conserved regions universal to all EndoV
family proteins [5]. Motif I contains an invariant Gln
residue that is moderately important for substrate and
product binding. Motif II includes the active site Asp
residue that is essential for catalysis. Motifs III-VI contain
many residues that are directly or indirectly involved in
protein—DNA interactions [5]. Site-directed mutagenesis
analysis of residues in conserved motifs revealed that D43
in motif II, E89 in motif III, and D110 in motif IV of T.
maritima EndoV, hereafter referred to as TmEndoV are
involved in metal cofactor coordination and catalytic
function (in E. coli enzyme, hereafter referred to as
EcEndoV, these residues correspond to D35, E82, D103,
respectively). The fourth highly conserved residue, H214 in
TmEndoV (D206 in EcEndoV), has been suggested to play
a role in metal binding, nonetheless is the most tolerant to
mutagenesis, €.g., it is exchangeable between Asp and His
in the EndoV family [3]. Tyrosine at position 80 of
TmEndoV (Y73 in EcEndoV) was shown to play a role
in substrate and product binding, and to be important in the
context of base preferences of mismatch cleavage [5].

Interestingly, substrate preference of EndoV homologs
varies among different organisms. EcEndoV has a wide
substrate spectrum, while EndoV from A. fulgidus and H.
sapiens recognize only deoxyinosine [6]. It has been
suggested that the deoxyinosine cleavage activity is a
primordial activity of EndoV enzymes and that the ability
of some bacterial members of this family to recognize other
DNA lesions was acquired later during the course of
evolution [7]. While TmEndoV can rapidly turn over T/U-
containing double-stranded DNA [2], S. #yphimurium EndoV
can only turn over deoxyuridine-containing DNA to a limited
extent when the substrates are in excess, likely due to tighter
binding to these substrates [8]. For EcEndoV the mismatch-
specific activity of the enzyme is reduced when the mismatch
is flanked by GC pairs, while its deoxyinosine-specific
activity is not influenced by the sequence context [9].
Nonetheless, amino acid residues essential for deaminated
base recognition and DNA cleavage are highly conserved.

@ Springer

The deoxyinosine or the damaged bases are not removed
from DNA by EndoV, and the enzyme forms a stable
complex with mutated DNA both before and after cleavage.
Therefore, it has been proposed that, besides its endonu-
clease activity, the enzyme might function to target other
repair protein(s), initiating a repair pathway [1]. It was also
hypothesized that the cleaved DNA is further repaired
through an alternative excision repair (AER) pathway that
requires the participation of either a 5’ endonuclease or a
3’5" exonuclease to remove the damaged base and DNA
polymerase and DNA ligase for repair action [10]. After
discovery of EndoV 3’-exonuclease activity, the alternative
model has been proposed, in which EndoV plays a dual
role in the repair process. According to this model,
additional protein(s) may induce a conformational change
in EndoV, causing switch from endonuclease to 3'-
exonuclease mode, progressive removal of nucleotides
from 3’ side to the 5’ side, and gap creation for repair
synthesis [5].

Regrettably, no structural information is available for
this interesting enzyme to study its sequence-function
relationships in a three-dimensional context. The only
information available is the discovery that EndoV is a
member of the RNase H superfamily [11], but apart from
the general three-dimensional fold of RNase H-like
enzymes (a very diverged superfamily of proteins), the
details of its structure remain unknown. Thus, we have used
bioinformatic methods to produce a structural model of
EcEndoV in complex with dsDNA and cofactor metal ions.
The model has allowed us to provide a structural context
for sequence conservation within EndoV proteins family,
and to highlight the previously obtained mutations that
have been shown to change its specificity.

Materials and methods
Sequence analyses

Searches of the non-redundant (nr) database were carried
out at the NCBI using PSI-BLAST [12], using the sequence
of EcEndoV protein as a query. Orthologous groups of
proteins encoded in complete genomes were obtained from
the Clusters of Orthologous Groups database (COGs) [13].
A multiple sequence alignment (MSA) of Endonuclease V
family members was generated using PROMALS [14] and
manually adjusted to maximize the number of aligned
homologous residues and preserve the continuity of
predicted secondary structure elements.

Secondary structure prediction, identification of ordered
and disordered regions, and fold-recognition (FR) analysis
of EcEndoV were carried out via the GeneSilico Meta-
Server gateway (for references to original methods see
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https://genesilico.pl/meta2) [15]. FR alignments to the top-
scoring templates from the Protein Data Bank were
compared, evaluated and ranked by PCONS [16].

Modeling of protein tertiary structure

Comparative modeling of EcEndoV structure followed the
‘FRankenstein’s monster’ approach [17, 18], which is a
method for comparative modeling by optimization of
target-template alignments (usually obtained by Fold
Recognition, hence capital FR in the method’s name) with
the aid of model quality assessment (MQA; see the
following section for a more detailed description). It
comprises the following steps: First, alternative sequence
alignments between the target sequence (here: EcEndoV)
and template structures (here: 2nrt for core domain and
1w9h for C-terminal fragment), are obtained from various
FR servers queried via the GeneSilico Meta-Server (see
above). Only alignments with scores above thresholds of
significance are used (the thresholds are based on the
Livebench evaluation [19, 20] and are different for each
server, as they use different scoring systems). Optionally,
these alignments may be refined to move insertions and
deletions into biologically realistic positions, e.g., on the
protein surface, to avoid disruption of the protein core.
Here, alignments were refined manually, taking into
account positions of catalytic residues and predicted
secondary structure elements. Based on the refined align-
ments, preliminary models are built using MODELLER
[21]. Models are superimposed onto each other and scored
by MetaMQAP [22].

A hybrid model (a “FRankenstein monster” itself) is
constructed by merging fragments (encompassing one or
more elements of secondary structure) based on the
following criteria: First, for each regions with consensus
alignment between >50% of models, the corresponding
structural fragment is taken from the model with the best
overall MetaMQAP score. For non-consensus regions,
the fragments with locally best MetaMQAP scores are
selected. The hybrid model is not optimized directly, but
is used as a reference to construct a new hybrid
alignment, and only then a new model is built and
evaluated again. Subsequently, only regions with poor
local MetaMQAP scores in the new model are optimized,
other regions are kept unchanged, at least on the level of
alignment. For such regions with poor MetaMQAP
scores, new alignments are generated by progressively
shifting the target sequence within the limits of predicted
secondary structures. Locally modified alignments are
used to generate new intermediate models, which are
again evaluated. The cycles of models building, evalua-
tion, local re-alignment in problematic regions and
generation of hybrids, by merging of best scoring

fragments, continues until the global MetaMQAP score
cannot be improved. We have previously used this
approach to successfully predict structures of other
nucleases that were subsequently confirmed by crystallo-
graphic analyses, e.g., R.Sfil [23] and R.Mval [24].

The obtained homology model was used as a starting
point for de novo folding of the poorly-scoring N-terminal
fragment (residues 1-28), while the homology-modeled
core (residues 29-223) was kept ‘frozen’. The search of
conformational space for the variable regions was carried
out with ROSETTA [25], one of the best existing methods
for de novo modeling of entire proteins and variable protein
fragments. Representatives of the largest clusters
(corresponding to the largest free-energy minima), obtained
from the analysis of ROSETTA preliminary models
(decoys), were selected. Full length models were obtained
by merging the homology-modeled core and the best
scoring de novo-modeled fragments, and again optimized
using MODELLER to improve stereo-chemical parameters
at the junctions between fragments and to alleviate minor
steric clashes. As the final model we selected the structure
that exhibited the best scores according to both MetaMQAP
[22] and PROQ [26] (see below).

Model quality assessment

Although the accuracy of structural models remains
unknown until the ‘real’ structure is obtained, there is a
number of methods that allows for predicting the accuracy
from various features of the model. One approach to predict
the quality of a model is based on Anfinsen’s hypothesis,
which states that the native structure is in the global energy
minimum, hence better models should exhibit lower free
energy. A relation between the model quality and the
energy, as calculated with physical force-fields (e.g., those
commonly used in molecular dynamics simulations), holds,
however, only for models that are very close to the real
structure (e.g., with RMSD less than 3 A) [27]. Thus, the
application of physical force-fields in connection with very
extensive sampling can, sometimes, improve the quality of
models that are already very good to start with, nonetheless
this approach in general is unable to either assess or
improve the quality of models that are outside the native
energy basin [28]. On the other hand, a number of methods
for model quality assessment have been based on statistical
evaluation of coarse-grained features that allow for dis-
crimination of models that are outside the global energy
minimum (i.e., almost all models produced by bioinfor-
matic approaches such as comparative modeling or de novo
folding). A number of model quality assessment programs
(MQAPs) have been recently developed and rigorously
tested (reviews: [26, 29]). Here, we used our own “meta-
server” MetaMQAP that obtains scores from a number of
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third-party MQAPs and uses a regression model to
calculate a predicted deviation between the position of
each residue in the model and its (unknown) position in the
real structure [22]. MetaMQAP “consensus” scores shows
better correlation with the actual model quality than the
scores of constituent methods. Independently, global eval-
uation of model quality was performed with the PROQ
method [26].

Modeling of the protein—-DNA complex

Prediction of DNA-binding sites on the protein surface was
carried out with PPI-PRED [30], which proposes three sites
ranked according to confidence. As there is no protein-
DNA complex structure for any homolog of EndoV, and
EndoV active site was suggested to be related to Ribonu-
clease H, we superimposed the EcEndoV model with
RNase H-DNA/RNA hybrid complex structure [31], re-
moved the protein moiety of RNase H and considered the
resulting EcEndoV-DNA/RNA complex as a very rough
approximation of how the EndoV might interact with its
nucleic acid substrate. The coordinate file of a B-DNA
molecule (PDB Id: 1hq7) was obtained from the RCSB
Protein Data Bank (PDB) [32]. The A to I mutation was
approximated by replacing the N6 atom of adenosine with
an O6 atom, without any further changes of the Watson—
Crick base pairing geometry. Cofactor metal ions were
copied from the RNase H-DNA/RNA complex structure.
To generate a structural model of EcEndoV-DNA interac-
tion we used HADDOCK (High Ambiguity Driven
biomolecular DOCKing) version 2.0 [33, 34], a computa-
tional docking method that allows to make use of
biochemical and/or biophysical information. The active
and passive residues defined for HADDOCK to drive the
docking process were chosen based on experimental data
about EndoV residues involved in protein-DNA interac-
tions [5], residues located in the “de novo” predicted
interaction interface (PPI-PRED results), as well as residues
buried in the afore-mentioned model with the DNA/RNA
hybrid from the superimposed RNase H structure. A 2 A
distance was used to define the ambiguous interaction
restraints (AIRs). The lowest-scoring member of the largest
cluster of docking solutions was selected as a final low-
resolution model of the EcEndoV-DNA complex.

Model analysis

Mapping of sequence conservation, from the EndoV family
MSA onto the final model was done via the ConSurf server
[35], using the neighbor joining (NJ) algorithm for
generating the phylogenetic tree, with the JTT substitution
matrix and empirical Bayesian method of calculating the
amino acid conservation scores. The distribution of elec-
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trostatic potential was calculated for the final model using
the APBS software package [36].

Results and discussion

Sequence analysis and protein fold-recognition of E. coli
EndoV

In order to identify homologs of EcEndoV, we used its full-
length sequence as a query to search the non redundant (nr)
protein database with PSI-BLAST (see methods). Sequen-
ces with significant similarity to the entire query (e-value<
0.005) were found in organisms from all domains of life
and included supposed EndoV orthologs as well as
Excinuclease ABC subunit C (UvrC) proteins and a group
of archaeal hypothetical proteins of unknown function.
Unlike EndoV, both these families possess structurally
characterized representatives in the Protein Data Bank: 2nrr,
2nrt, 2nrv, 2nrw, 2nrx, 2nrz for the C-terminal part of UvrC
from T maritima and 2qh9 (UPF0215 protein AF 1433 —
a protein of unknown function from A. fulgidus) for the
archaeal family of functionally uncharacterized proteins.
Archaeal proteins turned out to be members of COG1628
family, functionally uncharacterized and annotated as
Endonuclease V homologs [37]. COG1628 contains
sequences from Euryarchaeota, Crenarchaeota and one
protein from bacterium Deinococcus radiodurans.
Expectedly, secondary structure prediction for EcEndoV
revealed a 3-3-B-x-3-- pattern corresponding to com-
mon core of the RNase H fold [38, 39], with additional N-
terminal «-helix and (3-3-f3-oc-ox motif in C-terminal part of
the protein. Fold-recognition analysis of EcEndoV sug-
gested that the potentially best templates for modeling of
EcEndoV are the C-terminal domain of UvrC or a member
of COG1628 from A. fulgidus. Structures of these two
proteins were found on the top positions of most servers. In
particular, HHsearch [40] reported UvrC structure with the
score of 200.95 on the first position, and 2qh9 with the
score of 186.49 on the second position, while FFAS [41]
reported 2gh9 as the best template (score —40.5), followed
by UvrC (score —36.1). Another example can be SAM [42],
which reported UvrC with the scores in the range of
0.00052-0.0031, and 2gh9 with the score of 0.018.
Ultimately, the consensus server PCONSS5 [16] validated
the C-terminal nuclease domain of UvrC as the best
template for the catalytic core of EcEndoV (first six
positions in the ranking, with scores from 0.9062 to
0.7438). Thus, we decided to use the UvrC structure as
the primary modeling template. From all variants of the
UvrC structure (see above) we selected 2nrt as the highest-
resolution structure without missing internal fragments
[43]. However, because the 2nrt structure did not cover



J Mol Model (2009) 15:173-182

177

whole EndoV sequence, additional FR searches for the C-
terminal part of EndoV (residues: 131-223) were carried
out. Among the top templates for this fragment were 2qh9
and A. fulgidus Piwi protein (structure 1w9h). Since the
Iw9h structure exhibited much better agreement of second-
ary structure with that predicted for that region of EcEndoV
(1w9h contains 3-strands instead of o-helices present in
2gh9) it was used as a template for modeling of the
EcEndoV C-terminal fragment.

Figure 2 shows a simplified scheme of configuration of
known and predicted catalytic residues of EcEndoV, UvrC,
Piwi/Argonaute, and RNase HI, with reference to the
secondary structure of the catalytic core of these proteins.
Position of the first Asp residue (the middle of the first 3-
strand) is the same in all the enzymes. Position of the
second catalytic residue of EndoV (Glu) corresponds to the
position of Glu in human RNase HI structure, which is
located in the first «-helix of the catalytic core. The
following Asp is conserved in all the enzymes, and it is
located at the end of the fourth (3-strand of the catalytic
core (which in 3D structure is located next to the first (3-
strand). Piwi/Ago proteins posses an additional Glu in the
second «-helix of the catalytic core. Following the fifth 3-
strand there are differences in the structure composition of
these four enzymes, nonetheless the position of the C-
terminal o-helix, carrying the last catalytic residue, namely
Asp or His in EndoV family, His in UvrC and Piwi/Ago,
and Asp in the RNase HI, is comparable in all the enzymes,
and so is the position of the last catalytic residue.

Molecular modeling of EcEndoV structure

Comparative modeling technique requires a homologous
template with known structure to be identified and the
sequence of the modeled protein (a target) to be correctly
aligned to the template. Although the FR analysis revealed
clear homology of EndoV to proteins with the RNase H
fold, the alignments returned by different methods were
similar only in the regions corresponding to first (residues:
28-39), fourth (residues: 95-104) and fifth (residues: 124—
131) B-strands of the EcEndoV catalytic core (altogether
less than 30 residues of a 223 residue-long protein), and
differed significantly in the remaining regions. Thus,
modeling of EndoV should be considered as very chal-
lenging. In order to overcome the uncertainty of target-
template alignments we used the ‘FRankenstein’s monster’
approach to identify (and combine) local alignment variants
that yield best-scoring models [17, 18]. Alignments of
EndoV sequence to UvrC and Piwi structures reported by
FR methods were manually refined to shift insertions from
the protein core to loops and used as starting points for
automated comparative modeling. Each model was then
evaluated by MetaMQAP and all models were super-

imposed to generate a multiple structure alignment, where
regions with alternative alignments and different structures
could be compared to identify variants with locally best
scores. Based on this superposition, new hybrid alignments
were generated and used to generate further models. Thus, a
comparative model was constructed by iterating model
building, evaluation, local modification of alignments and
merging of fragments with best scores (see Methods for
details), until no significant improvement in MetaMQAP
score was observed. The final optimized alignment is
shown in Fig. 1. This template-based modeling failed to
produce any model with well-scored N-terminal helix,
therefore we decided to model this part de novo, using
ROSETTA [25]. As the final model we selected the one
with the best scores according to PROQ and MetaMQAP.
In particular, PROQ predicted that the difference between
our model of EcEndoV and the true (currently unknown)
can be expressed as an LGscore of 3.221, indicating a
potentially “very good” model. MetaMQAP also predicted
that global accuracy of our model is likely to be high, with
RMSD to the native structure predicted to be ~3.7 A and
the GDT _TS score predicted to be 46.749 (Fig. 2).

Figure 3 shows the predicted structure of EcEndoV,
indicating conserved residues as well as the results of local
accuracy prediction according to MetaMQAP. In agreement
with common sense, the central [3-sheet is predicted to be
modeled most accurately, while peripheral helices and
loops are predicted to exhibit relatively larger deviation
from the true structure. Mapping of the evolutionary
information from the multiple sequence alignment of
EcEndoV homologs onto the surface of the model reveals
that conserved residues form an elongated patch. Analysis
of the electrostatic potential reveals accumulation of
negative charge in the center of the conserved patch, which
is generated by a cluster of carboxylate residues involved in
binding of divalent metal ions. On the other hand, the more
peripheral conserved residues tend to exhibit positive
charge, suggesting that they may be involved in binding
of the negatively-charged DNA backbone.

Modeling of the protein—-DNA complex

Modeling of the protein—-DNA complex was carried out in
three steps. First, we predicted the DNA-binding site at the
surface of the EcEndoV model, using both de novo and
comparative approaches. Second, we modeled the DNA
substrate. Third, we docked the DNA substrate to the
protein model with restraints on the active site and
predicted binding site. In the first step, we used PPI Pred
[30] to identify potential sites of protein—DNA interactions
on the EcEndoV models structure. The highest-scoring
predicted binding patch comprised the following amino
acid residues: L3, R7, V36, G37, F38, 167, A68, T69, T70,
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Fig. 1 Optimized fold-recognition alignment of selected members of
the Endonuclease V family (indicated by a six-letter abbreviation for
genus and species, followed by the NCBI gene identification (GI)
number). The template structures detected by fold-recognition and
used for modeling are shown at the bottom, indicated by their PDB
accession numbers: 2nrt for UvrC, 1w9h for Piwi and 2gk9 for human
RNase HI. Conserved residues are highlighted. The amino acid
residues of EcEndoV are numbered. Secondary structure of EcEndoV
(taken from the final model) and of the templates used for modeling is

Fig. 2 Simplified scheme of
configuration of known and
predicted catalytic residues with
respect to the secondary struc-
ture in different members of the
EndoV family that represent
families used in the analysis

shown as tubes (helices) and arrows (strands). Secondary structure of
the EcEndoV is colored black in regions modeled by homology
modeling, while region folded de novo is shown in gray. Secondary
structures of the template structures are colored black in regions used
as a template for the homology modeling of corresponding regions of
the EcEndoV, while regions from particular templates not used for the
homology modeling are shown in gray. Residues important for the
catalytic activity of EndoV proteins are indicated above the alignment
by a single-letter code of the amino acid

Endo V-ITI)— ) — ) — D) — D) - T —
UvrC - ) )— D) — D) X —
o)) ) — D) — D) - X —

RNase H1 -I0l)— ) — ) — WD) - D — ) — D —
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Fig. 3 A structural model of
EcEndoV. Coordinates are
available for download from
ftp://genesilico.pl/iamb/models/
EndoV/ (a) Functionally impor-
tant residues of EcEndoV. The
protein backbone is shown in
the “cartoon” representation
(light gray), residues important
for catalysis and protein-DNA
interactions are shown in the
space-filled representation, la-
beled and colored according to
the sequence index, from blue
(N-terminus) to red (C-termi-
nus). The magnesium ions are
indicated by dark grey spheres.
(b) The model colored accord-
ing to the predicted accuracy
(agreement with the native
structure estimated for individu-
al residues using MetaMQAP),
from blue (highly confident, low
predicted deviation of Coc
atoms, predicted error ~1 A),
through intermediate values in-
dicated by green to orange, to
red (predicted low accuracy,
error difficult to estimate (>5 A).
(¢) Model in the surface repre-
sentation, colored according to
sequence conservation in the
EndoV family, from deep blue
(invariant) to light blue (con-
served), to yellow/red (highly
variable). (d) Model colored
according to the distribution of
electrostatic potential, from red
(—10 kT) to blue (+10 kT)

M71, P72, Y73, 174, P75, G76, F77, L78, S79, F80, R81,
S108, H109, and R112. Encouragingly, this list includes
most of residues defined experimentally by Cao and
coworkers as involved in protein—-DNA interactions [5],
and is in agreement with the position of catalytic center.
Thus, it is reasonable to assume that EcEndoV is likely to
bind its nucleic acid substrate in a similar manner to its
homologs. In the absence of a known structure of a close
homolog of EndoV in complex with DNA, we used a
structure of RNaseH-RNA/DNA complex [31] as a proxy
for illustrating potential protein—nucleic acid interactions.
Superposition of EcEndoV onto the RNase H structure
revealed that the RNA/DNA hybrid from the RNase H
complex structure covered the predicted DNA-binding site
of EcEndoV, suggesting that the orientation of the substrate
in both enzymes may be similar. We expect that the
substrate for EndoV is more likely a distorted B-DNA
structure rather than A-like structure observed in the RNA/

DNA duplex of RNase H complex. Therefore, in the second
step of analysis, we constructed a model of the EndoV
substrate as a nearly ideal B-DNA duplex, containing one
crudely modeled inosine (I) instead of A. The third step—
docking of the DNA substrate to the EcEndoV model was
carried out with HADDOCK?2.0 software [33, 34], using
experimental data about amino acid residues involved in
protein—-DNA interactions, predictions of interaction inter-
face and solvent accessibility as a restraints (see Methods
for details).

Analysis of the EcEndoV model

The model of EcEndoV-DNA complex (Fig. 4) is in
accordance with our expectations that protein and DNA
structures should exhibit steric and electrostatic compati-
bility. It satisfies essentially all restraints used for its
generation, including proximity between the DNA and the
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phc:sphc:dieﬁter bond

Fig. 4 A docking model of EcEndoV-DNA complex. The interaction
between the molecules has been predicted by HADDOCK based on
restraints from experimental data and putative protein-DNA interac-
tion site predicted by PPI-PRED. The protein backbone is shown as a
gray ribbon, the DNA is shown as sticks, with the scissile
phosphodiester bond and deoxyinosine residue colored are labeled.
The catalytic residues of EcEndoV and the magnesium ions are
indicated by spheres and labeled

afore-mentioned experimentally determined DNA-binding
residues [5]. Among residues determined to have a
profound effect on both substrate and product binding, the
only exception is G114, which seems to be buried and not
involved in the protein—DNA interaction, although it is
possible that mutations of this residue (G121 in TmEndoV)
may affect protein—DNA interaction indirectly, by perturb-
ing protein structure. The scissile phosphodiester bond (the
second phosphodiester bond at the 3’ side of the deoxy-
inosine residue) is correctly located next to the highly
conserved catalytic residues (D35, D103).

Interestingly, the model reveals no direct contacts
between EndoV and the inosine base. Instead, extensive
contacts with the DNA backbone are observed, suggesting
that non-standard bases are recognized by EndoV using an
indirect readout mechanism, e.g., based on distortion of the
backbone resulting from atypical base pairing or mis-
matches in the substrate. The exact nature of this
recognition must however await solution of a high-
resolution crystal structure of EndoV-DNA complex, as
such subtleties of interactions are way beyond the resolu-
tion of the current model. As mentioned earlier, the
predicted RMSD of our model to the native structure is

@ Springer

~3.7 A, which suggests that the structure is almost certainly
outside the global energy minimum, therefore techniques of
energy optimization are not expected to improve its quality.
Given the predicted relative (in)accuracy of our model and
its relatively large size, a fine-grained search for the global
energy minimum would be prohibitively expensive (months
of supercomputer time) and actually none of the available
methods would guarantee that the lowest-energy structure
would correspond to the correct solution. Thus, we have not
attempted to optimize the geometry of the protein, DNA or
the complex. At the present stage, however, the model can
be used to make predictions at the level of individual
residues.

The conserved Y80 of TmEndoV (Y73 in EcEndoV)
was shown to be important for substrate recognition. A
single alanine substitution at this position switched the base
preference from purine mismatches to C-specific mis-
matches, while histidine substitution caused T-containing
mismatch preference [44]. In our model of EcEndoV this
Tyr residue makes close contact with the T29* base
(complementary to the inosine). However, this region of
the model corresponds to a fragment where alignments
returned by different methods differed significantly, thus
conformation of this region is uncertain. Substitutions of
H116 in TmEndoV (H109 in EcEndoV) have led to
preference for A-containing mismatches [44]. According
to our model, H109 makes a contact with A4 (first base in
the 3’ direction from the deoxyinosine residue). Another
residue, whose mutations caused A-containing mismatch
preference in TmEndoV is A86. The corresponding residue
in EcEndoV is S79, which makes contact with the
phosphate backbone, further supporting our suggestion that
EndoV enzymes employ indirect readout to discriminate
between different substrates.

Summarizing, on the level of individual residues our
model represents a good fit to the existing experimental
data and therefore can be used to make new predictions. In
particular, we suggest that residues Y73, G76, L78, G106,
H109, G129, and A131 whose counterparts have been
studied by mutagenesis in TmEndoV, and additionally
H105, R134 and K133 predicted by the model to be
involved in EcEndoV-DNA interactions, may be interesting
targets for mutagenesis aiming at altering EndoV substrate
specificity. Although computational models cannot fully
substitute for high-resolution crystal structures, we hope
that until such a structure is obtained for EndoV-DNA
complex, the models presented in this work will serve as a
helpful guide for experimental analyses of this interesting
family of enzymes.

Another practical application might be to use the model
as a starting structure for molecular replacement (MR),
should the crystallographic data become available. This
might help to solve EndoV structure from the native data
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without the necessity of, e.g., obtaining selenomethionine
derivatives. Several groups have recently demonstrated that
theoretical models can be used to obtain successful MR
solutions, also in cases where the original template
structures used to build these models do not lead to good
solutions [45, 46]. The availability of the MQAP assess-
ment (i.e., prediction of how much each modeled residue is
likely to deviate from its real position) might be very
helpful in such case, as MR is very sensitive to errors in
models. Hence, we would recommend using only such
“core” of the model, whose predicted deviation from the
true structure would be significantly lower than the nominal
resolution of the crystallographic data used as an input.
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